Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses.
نویسندگان
چکیده
INTRODUCTION Among sensitized infants, those with high, as compared with low levels, of salivary secretory IgA (SIgA) are less likely to develop allergic symptoms. Also, early colonization with certain gut microbiota, e.g. Lactobacilli and Bifidobacterium species, might be associated with less allergy development. Although animal and in vitro studies emphasize the role of the commensal gut microbiota in the development of the immune system, the influence of the gut microbiota on immune development in infants is unclear. OBJECTIVE To assess whether early colonization with certain gut microbiota species associates with mucosal and systemic immune responses i.e. salivary SIgA and the spontaneous Toll-like receptor (TLR) 2 and TLR4 mRNA expression and lipopolysaccharide (LPS)-induced cytokine/chemokine responses in peripheral blood mononuclear cells (PBMCs). METHODS Fecal samples were collected at 1 week, 1 month and 2 months after birth from 64 Swedish infants, followed prospectively up to 5 years of age. Bacterial DNA was analysed with real-time PCR using primers binding to Clostridium difficile, four species of bifidobacteria, two lactobacilli groups and Bacteroides fragilis. Saliva was collected at age 6 and 12 months and at 2 and 5 years and SIgA was measured with ELISA. The PBMCs, collected 12 months after birth, were analysed for TLR2 and TLR4 mRNA expression with real-time PCR. Further, the PBMCs were stimulated with LPS, and cytokine/chemokine responses were measured with Luminex. RESULTS The number of Bifidobacterium species in the early fecal samples correlated significantly with the total levels of salivary SIgA at 6 months. Early colonization with Bifidobacterium species, lactobacilli groups or C. difficile did not influence TLR2 and TLR4 expression in PBMCs. However, PBMCs from infants colonized early with high amounts of Bacteroides fragilis expressed lower levels of TLR4 mRNA spontaneously. Furthermore, LPS-induced production of inflammatory cytokines and chemokines, e.g. IL-6 and CCL4 (MIP-1 beta), was inversely correlated to the relative amounts of Bacteroides fragilis in the early fecal samples. CONCLUSION Bifidobacterial diversity may enhance the maturation of the mucosal SIgA system and early intense colonization with Bacteroides fragilis might down-regulate LPS responsiveness in infancy.
منابع مشابه
Impact of the Gut Microbiota on Vaccine Responses
Non-responsiveness or poor responsiveness to vaccines are challenging issues in vaccine development, and efforts have been made to find out the potential reasons for these conditions. Intestinal microbiome plays a key role in regulating and development of immune system and the composition and diversity of microbiota in different individuals on the one hand, and the imbalance of intestinal micro...
متن کاملEarly development of the gut microbiome and immune-mediated childhood disorders.
The human gastrointestinal tract inhabits a complex microbial ecosystem that plays a vital role in host health through its contributions to nutrient synthesis and digestion, protection from pathogens, and promoting maturation of host innate and adapt immune systems. The development of gut microbiota primarily occurs during infancy and is influenced by multiple factors, including prenatal exposu...
متن کاملThe Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System
The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and ...
متن کاملThe Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces
Recent findings point toward diet having a major impact on human health. Diets can either affect the gut microbiota resulting in alterations in the host's physiological responses or by directly targeting the host response. The microbial community in the mammalian gut is a complex and dynamic system crucial for the development and maturation of both systemic and mucosal immune responses. Therefo...
متن کاملAdvances in understanding the interaction between the gut microbiota and adaptive mucosal immune responses
Commensal gut bacteria are necessary for the complete development of mucosal innate and adaptive immunity and thus may influence intestinal and systemic immune disorders. Recent work has advanced our understanding of this association by identification of a single taxon of the murine microbiota which can stimulate T-cell development and differentiation. It is hoped that further characterization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology
دوره 39 12 شماره
صفحات -
تاریخ انتشار 2009